Characterization of plasma proteins in children of different Mycobacterium tuberculosis infection status using label-free quantitative proteomics
نویسندگان
چکیده
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an infectious disease found worldwide. Children infected with MTB are more likely to progress to active TB (ATB); however, the molecular mechanism behind this process has long been a mystery. We employed the label-free quantitative proteomic technology to identify and characterize differences in plasma proteins between ATB and latent TB infection (LTBI) in children. To detect differences that are indicative of MTB infection, we first selected proteins whose expressions were markedly different between the ATB and LTBI groups and the control groups (inflammatory disease control (IDC) and healthy control (HC) groups). A total of 521 proteins differed (> 1.5-fold or < 0.6-fold) in the LTBI group, and 318 proteins in the ATB group when compared with the control groups. Of these, 49 overlapping proteins were differentially expressed between LTBI and ATB. Gene Ontology (GO) analysis revealed most proteins had a cellular and organelle distribution. The MTB infection status was mainly related to differences in binding, cellular and metabolic processes. XRCC4, PCF11, SEMA4A and ATP11A were selected and further verified by qPCR and western blot. At the mRNA level, the expression of XRCC4, PCF11and SEMA4A presented an increased trend in ATB group compare with LTBI. At the protein level, the expression of all these proteins by western blot in ATB/LTBI was consistent with the trends from proteomic detection. Our results provide important data for future mechanism studies and biomarker selection for MTB infection in children.
منابع مشابه
Proteomic Profiling of Mycobacterium tuberculosis Identifies Nutrient-starvation-responsive Toxin–antitoxin Systems*
In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimens...
متن کاملBiochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin
Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties. The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...
متن کاملMycobacterium tuberculosis Dominance over Nontuberculous Mycobacteria Irrespective of Immune Status: An Indian Scenario
Introduction: In HIV-associated tuberculosis cases, identifying nontuberculous Mycobacteria (NTM) from clinical samples has become essential regarding patients’ treatment and prognosis. This study aims to determine the prevalence of different Mycobacteria species from immunocompromised and immunocompetent patients with suspected tuberculosis attending a tertiary care hospital in Kolkata, India....
متن کاملHeterologous Expression, Purification, and Characterization of the HspX, Ppe44, and EsxV Proteins of Mycobacterium tuberculosis
Background: Subunit vaccines are appropriate vaccine candidates for the prevention of some infections. In this study, three immunogenic proteins of Mycobacterium tuberculosis, including HspX, Ppe44, and EsxV as a new construction, were expressed alone and as a fusion protein to develop a new vaccine candidate against tuberculosis infection. Methods: To make the fusion protein, the three genes ...
متن کاملUsing a Label-free Proteomics Method to Identify Differentially Abundant Proteins in Closely Related Hypo- and Hypervirulent Clinical Mycobacterium tuberculosis Beijing Isolates*
Although the genome of the Mycobacterium tuberculosis H37Rv laboratory strain has been available for over 10 years, it is only recently that genomic information from clinical isolates has been used to generate the hypothesis of virulence differences between different strains. In addition, the relationship between strains displaying differing virulence in an epidemiological setting and their beh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017